The Role of Human Performance in Decision Making

Maritime Automated Systems Development: Implications of Autonomy in Naval and Maritime Command, Training and Assessment

Dr. Tareq Ahram

Lead Scientist, Research Manager
Institute for Advanced Systems Engineering,
Department of Industrial Engineering and Management Systems,
University of Central Florida, Orlando, FL 32816, USA

tahram@ucf.edu

TARG 2017
6th Workshop on Training and Assessment
Tromsø, Norway
23-24 October, 2017
Outline

- Introduction
- Training and Systems Complexity
- Automation and Autonomous Systems
- The Modern Era of Maritime Automation
- Human Performance
- The Future
- Autonomous Ships and NexGen Command and Control
Orlando – UCF: The World Capital of Modeling, Simulation and Training (MS&T)
Industry MS&VR Partners

AcuSoft, Inc.
Advanced Engineering & Research
Advanced Information System
Advanced Interactive Systems Group
Advanced Systems Technology
Aegis Technologies Group
Aerosystems International
AHTNA Development Corporation
American Systems Corporations
Anteon Corporation
Applied Simulation Corporation
Boeing Aerospace
Booz-Allen & Hamilton
CAI, Inc.
Cadence Design Systems
CAE
Camber Corporation
Contact Point
CSC
Cubic Defense Systems
Digital System Resources
Digitec
Dimensions International
Dynamics Research
DynCorp
ECC International Corporation
EDS Federal
Engineering & Computer Simulations

Engineering Systems Solutions
Environmental Tectonics Corporation
GRC International
L-3 Communications
Litton TASC, Inc.
Lockheed Martin Information Systems
Maxim Group
Metters Industries
MODIS Technologies
MRJ Technology Solutions

Paradigm Technologies, Inc.
Pulau Electronics
Raytheon Company
SAAB Training
Science Applications Int’l Corporation
SGI
Southwest Research Institute
TAMSCO
Techware Corporation
TRW Data Technologies

Army
Navy
Air Force
JSIMS
Marine Corps
Coast Guard
COMPLEXITY OF TECHNOLOGIES OF THE 21TH CENTURY
COMPLEXITY OF TECHNOLOGIES OF THE 21ST CENTURY
Training and Systems Complexity

Increased Cognitive Workload

Poor system design as leading factor to safety risks with environmental impacts.
Challenges

- Managing complexity

- Human-technology system adaptation of capacities and capabilities to mitigate risks and safety

- Resilience as emergent behavior of complex technological automated systems
Human Error in Maritime Industry

Human error contributes to the vast majority (75-96%) of marine casualties.

Studies have shown that human error contributes to:

- 84-88% of tanker accidents
- 79% of towing vessel groundings
- 89-96% of collisions
- 75% of fires

Lessons Learned
Lesson #1
Nothing Can Stop Automation
Lesson #2 Mistakes Happen! Automation help us avoid Them

BUT I SAID, “BUY BIRTHDAY GIFT”. NOT “DRIVE OVER CLIFF”!
Lesson #3 Automation is Not a Solution for All Problems!

"I spend a lot of time on this task. I should write a program automating it!"

Theory:
- **Work**
- **Writing Code**
- **Work on Original Task**
- **Automation Takes Over**
- **Free Time**

Reality:
- **Work**
- **Writing Code**
- **Debugging**
- **Rethinking**
- **Ongoing Development**
- **No Time for Original Task Anymore**
Lesson #4 Poor Implementation Can Cause Frustration!

"Your call is important to us. Please stay on the line until your call is no longer important to you."
Automation
What is Automation?

- ‘Automatos’ a word of Greek origin termed to be as Automation, means “self-movement”

- The dictionary defines automation as “the technique of making an apparatus, a process, or a system operate automatically.”

- Automation: “the creation and application of technology to monitor and control the process/production and delivery of products/services.”

- Automation is the use of machines, control systems and information technologies to optimize productivity in the production of goods and delivery of services
Where to? A History of Autonomous Vehicles

Drawing of a pre-programmed clockwork cart by Leonardo Da Vinci, circa 1478. Had it been built, this cart would have been powered by large coiled clockwork springs, propelling it over 130 feet. The clever control mechanism could have taken the vehicle through a predetermined course.

Source: Biblioteca Ambrosiana, Milan, Italy
Robots have been about to take all the jobs for more than 200 years. Is it really different this time?

Technology has always triggered fears of mass unemployment. In 1811 it was the Luddites, who assumed they were done for.

In the 1930s, it was vaunted economist John Maynard Keynes, who implicated technology as one reason for the unemployment of the Great Depression.
Beginnings of Autonomy with the Invention of PLC

A PROGRAMMABLE LOGIC CONTROLLER (PLC) is an industrial computer control system that continuously monitors the state of input devices and makes decisions based upon a custom program to control the state of output devices.

Another advantage of a PLC system is that it is modular.
Timeline (1847-2016)
Digitalization and autonomous shipping
Emerging Technology Hype Cycle

Digitalization and autonomous shipping

Innovation Trigger
- Advanced Analytics with Self-Service Delivery
- Smart Advisors
- Micro Data Centers
- Digital Dexterity
- Software-Defined Security
- Neurobusiness
- Citizen Data Science
- Biochips
- IoT Platform
- Connected Home
- Affective Computing
- Smart Robots
- 3D Bioprinting Systems for Organ Transplant
- Volumetric Displays
- Human Augmentation
- Brain-Computer Interface
- Quantum Computing
- Bioacoustic Sensing
- People-Literate Technology
- Digital Security
- Virtual Personal Assistants
- Smart Dust

Years to mainstream adoption:
- less than 2 years
- 2 to 5 years
- 5 to 10 years
- more than 10 years
- obsolete before plateau

Time

As of July 2015

gartner.com/SmarterWithGartner

© 2015 Gartner, Inc. and/or its affiliates. All rights reserved.
Reasons for Automation

• Optimal Performance and operational cost
• Safety and Reliability.
• Crew Reduction, total Workforce Management, and increased productivity.
• High cost of labor.
• Labor shortages.
• Trend of labor towards service sector.
• High cost of raw materials.
• Improved quality.
• Reduced lead-time.
• Reduction of inventory.

High cost of not automating!
Levels of Automation

<table>
<thead>
<tr>
<th>Levels</th>
<th>Description</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>Labor</td>
<td>Mechanization</td>
</tr>
<tr>
<td>Level 1</td>
<td>Scripts</td>
<td>Automation</td>
</tr>
<tr>
<td>Level 2</td>
<td>Orchestration</td>
<td>Level 1 + Adaptability</td>
</tr>
<tr>
<td>Level 3</td>
<td>Autonomics</td>
<td>Level 2 + Awareness</td>
</tr>
<tr>
<td>Level 4</td>
<td>Pre-cognitive</td>
<td>Level 3 + Analytics</td>
</tr>
<tr>
<td>Level 5</td>
<td>Cognitive</td>
<td>Level 4 + Alive</td>
</tr>
</tbody>
</table>
Level of Automation

- **Manned Ship**: Radar, ECDIS, Visual...
- **Remote Ship**: Radar, ECDIS, Visual...
- **Automated Ship**: Radar, ECDIS, Visual...
- **Autonomous Ship**: Radar, ECDIS, Visual...

Generic Alternatives

On-Board

Action

Shore

Action

Action

Action
The Modern Era of Ship Automation

Propulsion (Main Engine) and **Power** (Auxiliary Engines)

Monitoring & Control

Auxiliary Machinery Monitoring and Control covers several systems like: main sea & fresh water cooling system – pumps, system pressure, temp. etc.,

Cargo & Ballast Monitoring & Control For safe on and off loading of cargo, especially on tankers, this process is closely monitored and many times incorporates functions like: Level gauging, Control of cargo pumps, Valve control, Ballast & ballast pump control, Heeling control, Remote monitoring of temperature, pressure, and flow.

Condition based monitoring In order to further improve the ships efficiency many equipment manufacturers are looking into feeding the main control and monitoring system with opportunities for condition based monitoring.
Digitalization and Autonomous Shipping

Ships are becoming sophisticated sensor hubs and data generators. This make our challenges more complex and dynamic.

The fleet of the future will continually communicate with its managers and perhaps even with a “traffic control” system that is monitoring vessel positions, maneuvers and speed.
The Role of Human Performance and Decision Making
Role of Human Decision in Accidents

“Direct Factors”

“Indirect Factors”

Regulatory, Policy, Social, Environmental and Organizational Factors
Accidents Root Cause

ACCIDENT

HUMAN

HARDWARE

EXTERNAL

DIRECT LEVEL

COMPETENCE

MOTIVATION / MORALE

TEAMWORKING

SITUATIONAL AWARENESS / RISK PERCEPTION

FATIGUE / ALERTNESS

HEALTH

COMMUNICATIONS

AVAILABILITY OF INFORMATION / ADVICE

COMPLIANCE

AVAILABILITY OF SUITABLE RESOURCES

INSPECTION & MAINTENANCE

EQUIPMENT OPERABILITY

WORKPLACE ENVIRONMENT

EXTERNAL CONDITIONS

PPE

ORGANISATIONAL LEVEL

RECRUITMENT & SELECTION

TRAINING

PROCEDURES

PLANNING

INCIDENT MANAGEMENT & FEEDBACK

MANAGEMENT / SUPERVISION

PAY AND CONDITIONS

COMMUNICATIONS

SAFETY CULTURE

EQUIPMENT PURCHASING

INSPECTION & MAINTENANCE

DESIGN

POLICY LEVEL

CONTRACTING STRATEGY

OWNERSHIP & CONTROL

COMPANY CULTURE

ORGANISATIONAL STRUCTURE

SAFETY MANAGEMENT

LABOUR RELATIONS

COMPANY PROFITABILITY

ENVIRONMENTAL LEVEL

POLITICAL INFLUENCE

REGULATORY INFLUENCE

MARKET INFLUENCE

SOCIETAL INFLUENCE

Accidents Root Causes are Complex

Accidents Root Causes

- **Fatigue** (16% of vessel casualties, 33% of injuries)
- **Inadequate Communications** (70% of major marine collisions)
- **Inadequate General Technical Knowledge** (35% of casualties)
- **Inadequate Knowledge of Own Ship Systems** (78% of accidents)
- **Poor Design of Automation**
- **Decisions Based on Inadequate Information.**
- **Faulty standards, policies, or practices**
- **Poor maintenance**
- **Hazardous natural environment.**
Example

Human behaviour while performing safety critical tasks

Human capabilities

GDFs and their effects on bridge personnel

Hazard exposure

Safety critical task performance

GDFs and their effects on engine personnel

Source: Enhancing human performance in ship operations by modifying global design factors at the design stage Reliability Engineering and System Safety 159 (2017) 283–300
Human Performance and Training Assessment

- Training planning and Automation decisions should be made based on manpower and performance considerations in order to:

 1) Assess team readiness
 2) Determine training needs
 3) Evaluate the impact of an intervention
 4) Conduct capability and reliability analysis
 5) Assess level of Automation needed

- Human performance measures studied and developed to quantify and maximize crew performance with respect to technology readiness and total ownership cost.
An insufficiency of human factors research is an issue in many areas however, the problem is particularly severe in the maritime sector, likely due to a combination of reasons including:

1. A lack of movement away from traditional practices particularly compared to other transport domains, which can, for example, lead to relatively slow adoption of technology in maritime industry.
2. A lack of awareness for many people about the maritime industry in general, as maritime shipping does not appear to be a part of our everyday lives, compared to road, rail and air.
3. Acute and increasing competition in the industry, resulting in time and cost pressures, with human factors considered by many to be an unnecessary expense.
4. A lack of crew involvement in vessel and task design, resulting in poorly adapted equipment.
5. The multinational nature of shipping, leading to disparity between operating procedures, safety management and skill levels of crew and a lack of coherent research on these topics.

Physical, psychological, medical, social, workplace and environmental factors have all been listed as potential contributors to maritime accidents. All influence the performance of the human element of the system, potentially leading to unsafe actions by crew members.

Ships operate with large inertia often combined with close proximity to other vessels. Furthermore, the cues for decision making are not always directly observable, for example the sea-ship interaction and the effects of currents and meteorological conditions are often ‘felt’ rather than measured.

These factors create challenges for seafarers and increase the risks of working on ships.

Human Performance/Manpower Automation Programs

Provide Total Workforce Management

- Continue development of **Simulation Toolset** for Analysis of Mission, Personnel, and Systems (STAMPS)
- Define framework for Position Management Line of Business
- Expand development of Navy Manpower Methodologies and Tools
 - Prototype Interim Staffing Standards Development Methodology
 - Uniform Manpower Requirements Determination Capability
- Expand **manpower analytics** capabilities
 - e.g. CNA, WCM, NPS-Thesis, etc.
- Continue assessment of manpower requirements determination processes, allowances & factors
 - e.g., Make Ready/Put Away (MRPA) Phase II
- Complete design of new **manpower requirements** determination process for unmanned aerial vehicles (UAV) – NAVSEA collaboration
- Continue integrating Manpower into Supply Chain initiatives
- Ensure accuracy & alignment of manpower data & systems to Navy policy
 - Manpower data – FIT focus
 - Increase Policy Effectiveness - OPNAVINST 1000.16
Automation possibilities and Performance Architecture

<table>
<thead>
<tr>
<th>Performance Function</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory-perceptual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skills</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUTOMATION AREA

Human Performance TOC Translation (Economical Value Assessment Modeling e.g. CBA, HPV, RCA, MAUTI..etc.)
Target Performance (Contract) = (1.0)

Training + Automation

Training

Standard Human Performance PDF
Modern human machine interface

Removable programming unit on the left side of the photo in a modern ship.

Touch screen to the right replaces a wall of annunciators and ten-turn potentiometers.

Source: Marine Automation: Technological Possibilities and Human Limitations Stephen Wright, 2015
Ship-automation Limitations

Many limitations on autonomous vessels are not technical; they are social. Anticipated skeptics include labor unions and environmental organizations.

We can build and operate a remote-controlled or autonomous vessel today. But our neighbors may not let us!

- Only scientific risk-analysis can determine actual risk
- We compare an autonomous vessel to a crewed vessel and compare the cargo risk and vessel risk.
- The actual risks include equipment failure and malicious interference – hackers on line or pirates on speedboats.

Source: Marine Automation: Technological Possibilities and Human Limitations Stephen Wright, 2015
Benefits

- An automation system can apply simultaneous analysis and comparisons in real time, learning from system history to better anticipate responses providing more appropriate system corrections with each iteration of its ever-improving response curves.

- In an autonomous ship, the system learns the ship just as a crew would, but all system information is shared, not subjectively compartmentalized, as with a human crew.

- The engineering challenge is to parse and save the data while gleaning all that can be learned from it. A complex system has large data needs. There is no data center at sea.

- What is done at sea and what is done on land is part of the developing methods of control.
The Future
Autonomous Ships and NexGen Command and Control

“Autonomous shipping is the future of the maritime industry. As disruptive as the smartphone, the smart ship will revolutionise the landscape of ship design and operations”

Mikael Mäkinen, President, Marine

Rolls-Royce
Revolution

For the smart ship revolution to become a reality a number of critical questions need to be answered.

Technology
What technology is needed and how can it be best combined to allow a vessel to operate autonomously, miles from shore?

Safety
How can an autonomous vessel be made at least as safe as existing ships, what new risks will it face and how can they be mitigated?

Regulatory Liability
What will be the incentive for owners and operators to invest in autonomous vessels? Are autonomous ships legal and who is liable in the event of an accident?
Technology.

A ship’s ability to monitor its own health, establish and communicate what is around it and make decisions based on that information is vital to the development of autonomous operations.

1. **Sensors** that inform an electronic brain and allow the vessel to navigate safely and avoid collisions.

2. **Control algorithms** Navigation and collision avoidance will be particularly important for remote and autonomous ships, allowing them to decide what action to take in the light of sensory information received.

3. **Communication** Autonomous vessels will still need human input from land, making connectivity between the ship and the crew crucial.
The operation of remote and autonomous ships will need to be at least as safe as existing vessels if they are to secure regulatory approval, the support of ship owners, operators, seafarers and wider public acceptance.

Remote and autonomous ships have potential to reduce human-based errors, but at the same time may modify some existing risks as well as create new types of risk. These circumstances and possible remedies will need to be explored.

The marine industry has some experience on systematic and comprehensive risk assessments. However, when new, emerging technology is involved, new knowledge, wider and deeper understanding of new and changed risk (with a variety of known and unknown hazards) is needed; guided by research to lead us to new approaches the project is exploring.

Cybersecurity will be critical to the safe and successful operation of remote and autonomous vessels. The project will identify and adapt current best practice from a range of industries for application in the marine environment.

The results will be used to make recommendations to regulators and to classification society and other AAWA Partners to support development work for creating the first set of standards for remote and unmanned vessel operation.
Regulatory Liability
NexGen Command and Control

Transition Roadmap to Autonomous Shipping

1. Acceptance & Adoption
 - Cognitive approval
 - Experiments
 - Ship Connectivity

2. Standards & Infrastructure
 - International regulation
 - Ship Connectivity

 - Situational awareness system
 - National regulation
 - Examples from automotives

4. Remote Control Systems in Operation
 - Spin-off products and services
 - Regional teleoperation & remote control centres

5. Market Reconfiguration & Growth
 - Market niches
 - Innovation diffusion
 - Redefined roles for actors

6. Time

Remote and Autonomous Ships
The next steps
Port Automation: Smart, Smarter, Smartest!

- The global container handling equipment fleet is getting smarter as port operators apply more sophisticated IT in their operations.

- The amount of intelligence on both manned cranes as well as unmanned equipment is increasing in a quest for improved safety, productivity and eco-efficiency.

- As part of the evolution, equipment is becoming more and more unmanned.
Next steps...

- **2020**: Remotely operated local vessel
 - Reduced crew with remote support and operation of certain functions
- **2025**: Remote controlled unmanned coastal vessel
- **2030**: Remote controlled unmanned ocean-going ship
- **2035**: Autonomous unmanned ocean-going ship

Unmanned ships will most likely start with local applications.

Source: Marine, Ship Intelligence - Rolls-Royce Advanced Autonomous Waterborne Applications Initiative (AAWA), August 2017
Conclusions:

• Ships already have centralized lineups of switchgear actuated remotely.

• Each of these motor controllers has a “Hand/Off/Auto” or “Hand/Off/Remote” switch.

• It is only a question of how remote or how automatic.

• Complete remote operation is possible. Transas and Kongsberg training simulators resolved many issues.

• Remotely operated underwater vehicle ROV/autonomous underwater vehicle AUV developments are largely scalable to commercial vessels.

• Department of Defense drone deployments are more challenging than operating a ship at 12 knots.

• Remote operation is limited by telecommunications reliability and bandwidth. In short – weather.
Emerging technologies in Maritime

1. Big Data Analytics
Machine learning can find meaningful patterns buried in the noise

2. IoT for Automation (Connected Web of Sensors)
All of this IoT data can be fed into the big data analytics platform and visualized in a way that helps command centers make better decisions.
Futuristic Demo: NexGen Command and Control
2018 iHSI
International
1st International Conference on
Intelligent Human Systems Integration:
Integrating People with Intelligent Systems

JW Marriott Marquis
Dubai, UAE

Call for Papers

7-9 January, 2018